Bousfield Localization and Algebras over Operads

نویسنده

  • DAVID WHITE
چکیده

We give conditions on a monoidal model category M and on a set of maps S so that the Bousfield localization of M with respect to S preserves the structure of algebras over various operads. This problem was motivated by an example due to Mike Hill which demonstrates that for the model category of equivariant spectra, even very nice localizations can fail to preserve commutativity. As a special case of our general machinery we characterize which localizations preserve genuine equivariant commutativity. Our results are general enough to hold for non-cofibrant operads as well, and we will demonstrate this via a treatment of when localization preserve strict commutative monoids. En route we will introduce the commutative monoid axiom, which guarantees us that commutative monoids inherit a model structure. If there is time we will say a word about the generalizations of this axiom to other non-cofibrant operads, and about how these generalized axioms interact with Bousfield localization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monoidal Bousfield Localizations and Algebras over Operads

We give conditions on a monoidal model category M and on a set of maps C so that the Bousfield localization of M with respect to C preserves the structure of algebras over various operads. This problem was motivated by an example due to Mike Hill which demonstrates that for the model category of equivariant spectra, preservation does not come for free, even for cofibrant operads. We discuss thi...

متن کامل

The plus construction, Bousfield localization, and derived completion

We define a plus-construction on connective augmented algebras over operads in symmetric spectra using Quillen homology. For associative and commutative algebras, we show that this plus-construction is related to both Bousfield localization and Carlsson’s derived completion.

متن کامل

Eilenberg-moore Model Categories and Bousfield Localization

Talk 1: Big Goal of Alg Top, operads and model categories, fix notation for model categories, remarks about how difficult it is to verify model category axioms. Motivation from equivariant spectra, and discussion of Kervaire. Monoidal model categories, define the inherited model structure on the category of algebras over an operad. Basic facts about Bousfield localization. Preservation theorem ...

متن کامل

Homotopy completion and topological Quillen homology of structured ring spectra

Working in the context of symmetric spectra, we describe and study a homotopy completion tower for algebras and left modules over operads in the category of modules over a commutative ring spectrum (e.g., structured ring spectra). We prove a strong convergence theorem that for 0-connected algebras and modules over a (−1)-connected operad, the homotopy completion tower interpolates (in a strong ...

متن کامل

Localization of Algebras over Coloured Operads

We give sufficient conditions for homotopical localization functors to preserve algebras over coloured operads in monoidal model categories. Our approach encompasses a number of previous results about preservation of structures under localizations, such as loop spaces or infinite loop spaces, and provides new results of the same kind. For instance, under suitable assumptions, homotopical locali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014